LETTERS TO THE EDITOR

Reply:

Liao, Wang, and Yang (Letter to the Editor, July 2007, pp. 1898–1899, DOI 10.1002/aic.11192) have correctly pointed out that the total regeneration targets ($F_{ws} = F_{reg} = 37.5 \text{ t/h}$ and $F_{ww} = 17.5 \text{ t/h}$) for the water network discussed in Example 1 by Agrawal and Shenoy¹ are feasible, based on the observations of Mann and Liu^2 for some special multipinch cases. What must be recognized in such cases is that the regeneration inlet concentration C_{in} can be greater than the pinch concentration C_p (rather than assume $C_{in} = C_p$).

Agrawal and Shenoy¹ setup a system of three equations (Eqs. 2, 8 and 9) for the case of a single pinch point (denoted by subscript P). For the case of two pinch points (denoted by subscripts P and A), the following additional equation (which is a mass balance over the region below pinch point A) needs to be considered

$$m_A = F_{ws} (C_{in} - C_{ws}) + F_{reg} (C_A - C_o)$$

where m_A and C_A are the cumulative mass load and the concentration, respectively, of the pinch point A on the limiting composite. The above equation along with Eqs. 2, 8 and 9 constitutes a system of four equations in five unknowns (F_{ws} , F_{ww} , F_{reg} , C_{ww} , and C_{in}). Since there is one degree of freedom, we specify $F_{ws} = F_{reg}$ for the case of total regeneration, and then use the equations to determine the targets as illustrated below.

For Example 1 of Agrawal and Shenoy with total regeneration, Eq. 8 on substituting $C_o = 20$ ppm, $C_p = 150$ ppm, and $m_p = 10.5$ kg/h gives the freshwater ($C_{ws} = 0$) and regeneration targets, as $F_{ws} = F_{reg} = m_p/(2 C_p - C_{ws} - C_o) = 37.5$ t/h. Then, Eq. 2 with $\Delta_1 = 20$ t/h gives $F_{ww} = 17.5$ t/h. Now, the new equation given above with $C_A = 250$ ppm and $M_A = 15$ kg/h yields $C_{im} = m_A/F_{ws} + C_{ws} + C_o - C_A = 170$ ppm (which is higher than $C_p = 150$ ppm). Finally, Eq. 9 with $\Delta_2 = -10$ kg/h gives $C_{ww} = 250$ ppm. The targets of 37.5 t/h (for freshwater), 17.5 t/h (for wastewater) and 37.5 t/h (for

The targets of 37.5 t/h (for freshwater), 17.5 t/h (for wastewater) and 37.5 t/h (for regeneration) for Example 1 with total regeneration may be achieved in practice through many different network designs. Several networks, all of which feature minimum freshwater consumption, may be designed using the *nearest neighbors algorithm* (NNA)^{F,3} depending on the order in which the demands are satisfied. Figure 1

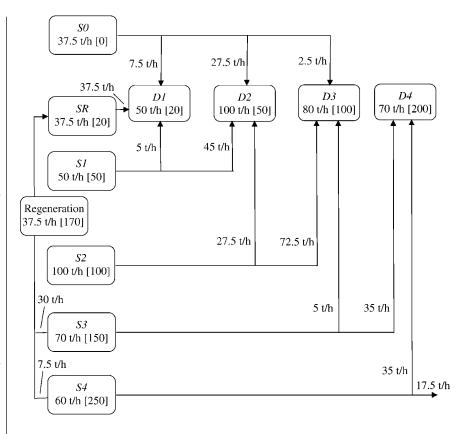


Figure 1. Network for Example 1 by NNA for total regeneration.

Labels show contaminant concentrations [ppm] and flow rates (t/h).

shows a possible network obtained by a straightforward application of the NNA (starting with demand DI, and then satisfying demands D2, D3, and D4 in that order). The regenerated water provides an additional source SR of 37.5 t/h at 20 ppm, which is entirely used to satisfy the demand DI (also at 20 ppm). The source SR is itself obtained by regenerating water from sources S3 (30 t/h) and S4 (7.5 t/h) at $C_{in} = 170$ ppm.

In summary, it may be noted that targets and networks for minimum freshwater may be obtained for total regeneration, provided the regeneration inlet concentration is at or above the pinch concentration $(C_{in} \geq C_p)$. To determine C_{in} , a supplementary equation corresponding to the mass balance over the region below the additional pinch must be considered.

Literature Cited

- Agrawal V, Shenoy UV. Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J. 2006;52(3): 1071–1082
- Mann JG, Liu YA. Industrial water reuse and wastewater minimization. McGraw-Hill; 1999.
- 3. Prakash R, Shenoy UV. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. *Chem Eng Sci.* 2005;60:255–268.

Vibhor Agrawal Uday V. Shenoy Dept. of Chemical Engineering Indian Institute of Technology Powai, Bombay 400 076, India E-mail: (shenoys@vsnl.com)

AIChE Journal, Vol. 53, 3017 (2007) © 2007 American Institute of Chemical Engineers DOI 10.1002/aic.11285 Published online September 28, 2007 in Wiley InterScience (www.interscience.wiley.com).